РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ФОРМА GOV ОМ-04-06

ПРЕДУПРЕЖДЕНИЕ: НЕСОБЛЮДЕНИЕ ПРИВЕДЕННЫХ ЗДЕСЬ УКАЗАНИЙ ПО МОНТАЖУ МОЖЕТ ПРИВЕСТИ К НАРУШЕНИЮ РАБОТЫ ДВИГАТЕЛЯ И, КАК СЛЕДСТВИЕ, К ТРАВМАТИЗМУ ОПЕРАТОРОВ ИЛИ НАХОДЯЩЕГОСЯ ПОБЛИЗОСТИ ПЕРСОНАЛА.

1.0 ОПИСАНИЕ СИСТЕМЫ

1.1 Регулятор газового двигателя Altronic серии GOV разработан для применения на мощных газовых двигателях и интегральных газомотокомпрессорах. Регулятор программируется непосредственно на месте эксплуатации и обеспечивает управление подачей топлива и скоростью вращения двигателя, а также ряд диагностических функций. В данном Руководстве содержатся указания по эксплуатации и техническому обслуживанию моделей GOV10 и GOV50. Перед началом работы рекомендуется прочитать данное руководство полностью.

Не пытайтесь применять, обслуживать или ремонтировать клапан управления подачей топлива, не прочитав и не усвоив содержание данного Руководства.

1.2 Регулятор газового двигателя Altronic GOV должен использоваться с чистым, сухим природным газом. Природный газ в сочетании с воздухом образует легковоспламеняющуюся смесь. При воспламенении такой смеси в замкнутом объеме, например в инжекторном поршневом двигателе или его выхлопной системе, происходит б ыстрое и энергичное сгорание. Необходимо всегда соблюдать особую осторорожность при работе с любой топливной системой. Системы управления, используемые с поршневыми газовыми двигателями, следует всегда проектировать отказоустойчивыми. В этой связи регуляторы газовых двигателей Altronic GOV10/50 играют важную роль в обеспечении безопасности системы в целом.

ПРЕДУПРЕЖДЕНИЕ: Регулятор газового двигателя GOV10/50 НЕ является запорным клапаном. Запорная арматура должна дополнять Регулятор. Топливную систему следует проектировать таким образом, чтобы:

- 1. неисправность любого индивидуального компонента не приводила к ситуациям, когда топливо продолжает подаваться к остановленному двигателю.
- 2. неисправность любого индивидуального компонента не приводила к неконтролируемой подаче топлива при запуске двигателя.

НЕСОБЛЮДЕНИЕ ВЫШЕУКАЗАННЫХ ПРАВИЛ МОЖЕТ ПРИВЕСТИ К СЕРЬЕЗНОМУ ТРАВМАТИЗМУ ПЕРСОНАЛА ИЛИ ПОВРЕЖДЕНИЮ ОБОРУДОВАНИЯ.

1.3 Регулятор газового двигателя Altronic серии GOV10/50 предназначен для управления скоростью вращения поршневых инжекторных газовых двигателей. Топливный клапан управляет подачей топлива, изменяя проходное сечение диафрагмы; в качестве движущей силы используется давление топливного газа. Топливный клапан состоит из цилиндрического корпуса, тарельчатого клапана и кожуха с электронной начинкой. Эти три компонента объединены в единый модуль. Регулятор GOV не требует дополнительных исполнительных устройств или механических тяг.

- 1.4 Корпус регулятора содержит в себе диафрагму (используемую для измерения расхода) и тарельчатый клапан. Основной корпус оснащен монтажными фланцами. Клапанный узел состоит из следующих компонентов:
 - Тарельчатый клапан
 - Седло клапана
 - Заполненный маслом сильфон для гашения вибраций
 - Возвратная пружина

В кожухе электронного узла находятся:

- Регулятор давления «мускульного» газа
- Компоненты для управления «мускульным» газом
- Три (3) измерительных преобразователя давления
- Измерительный преобразователь дифференциального давления (\(\Delta\P\))
- Термосопротивление для измерения температуры топливного газа
- 1.5 Дисплейный модуль регулятора обеспечивает все необходимые функции программирования и вывода данных. Конструкция дисплейного модуля позволяет монтировать его на удаленном щите управления двигателем. Протокол RS-485 позволяет передавать данные к удаленному абонентскому устройству на расстояние до 350 футов.
- 1.6 Уставки оборотов двигателя можно менять с помощью дисплейного модуля, аналоговым сигналом 4-20 мА или используя интерфейс MODBUS RTU.

2.0 МОНТАЖ БЛОКА GOV

2.1 Регулятор следует осмотреть сразу после распаковки. Проверьте, нет ли повреждений, полученных при транспортировке. Если физическая целостность регулятора сомнительна, свяжитесь с дистрибьютором фирмы Altronic, который поставил этот регулятор. По возможности следует сохранить оригинальную упаковку. Если в будущем планируется перевозка или хранение регулятора, его контейнер обеспечит оптимальную защиту.

Убедитесь, что модель и конфигурация полученного регулятора соответствует упаковочному листу и бланку заказа. Информация н а верхней панели регулятора относится исключительно к данному клапану, например, расход газа, тип фланца и т. д. Регуляторы GOV10/50 CSA-сертифицированы для опасных зон по Классу I, Группа D, Разделы 1 или 2. См.чертежи 809007и 809008.

- 2.2 Решая вопрос о м есте размещения регулятора, рекомендуется иметь в виду следующее:
 - Регулятор следует размещать вдали от любых мощных источников тепла. Рабочая температура воздуха составляет от -40°F до +185°F (от -40°C до +85°C). Не подвергайте регулятор воздействию более высоких температур.
 - В регулятор должен подаваться чистый, сухой природный газ.
 - Температура подаваемого газа не будет влиять на скорость потока, если регулятор работает в указанном температурном диапазоне (см.выше). Температура топливного газа не должна превышать 185°F (85°C).
 - Колебания давления топливного газа не будут влиять на расход газа через регулятор, при условии, что давление не упадет ниже минимального уровня, необходимого для обеспечения такого расхода.

2.3 Регулятор GOV можно устанавливать либо в горизонтальном (предпочтительно), либо в вертикальном положении. В идеальном случае на выходе регулятора должен быть прямолинейный участок трубы длиной не менее 10 своих диаметров (напр., 15 дюймов для трубы диаметром 1,5 дюйма). Это поможет обеспечить постоянство и нетурбулентность потока газа сквозь измерительную диафрагму, повышая точность измерения расхода. Впрочем, нет жесткой необходимости устраивать гладкие участки трубопровода на входе и выходе регулятора, хотя точность измерения расхода при этом несколько пострадает. После монтажа регулятора можно будет скорректировать измерения в целях повышения точности расходомера. Для оптимизации реакции двигателя на изменения расхода топлива регулятор следует устанавливать на расстоянии не более 10 футов от топливного коллектора.

Регулятор обычно монтируют на 4- или 8-болтовых фланцах, или же на дополнительном монтажном основании. В нижней части регулятора выполнены резьбовые отверстия (5/16"-18) для крепления устройства на плоской поверхности. Модель GOV10 комплектуется либо 4-болтовыми фланцами серии SAE 61 под 2-дюймовую трубу, или же 8-болтовыми фланцами ANSI класса 300 (также под 2-дюймовую трубу). Модель GOV50 выпускается только с 4-болтовыми фланцами серии SAE 61 под 2-дюймовую трубу.

2.4 Для работы регулятора постоянно требуется «мускульный» газ давлением по крайней мере на 25 PSIG выше давления в топливном коллекторе. Если давление топливного газа (т.е. давление на входе в регулятор) постоянно превышает необходимые 25 PSIG по сравнению с давлением в коллекторе (т. е. на выходе регулятора), он будет работать за счет «мускульной» силы, создаваемой давлением топливного газа. Если необходимая разность давлений не обеспечена, придется подвести «мускульный» газ на вход регулятора от подходящего внешнего источника. В обычном режиме «мускульный» газ стравливается в выходной трубопровод. При использовании внешнего источника «мускульного» газа на этой линии придется поставить запорный клапан, который будет закрываться при останове двигателя. Расход «мускульного» газа составляет 3 SCFM.

ПРИМЕЧАНИЕ: Регуляторы GOV требуют применения внешнего фильтра (№ по каталогу 820001). Подробности см. на чертежах 801011 и 809012.

Максимальное рекомендуемое давление топливного газа составляет 75 фунтов/кв.дюйм. В зависимости от проекта это давление, возможно, придется уменьшить для обеспечения правильной работы в режиме легкой нагрузки.

ПРЕДУПРЕЖДЕНИЕ: Максимальное давление на входе никогда не должно превышать 200 PSIG.

3.0 ПОДКЛЮЧЕНИЕ БЛОКА GOV

3.1 Нижеследующие указания соответствуют требованиям подключения блока GOV к источнику питания. Методы подключения должны соответствовать местным правилам, применимым к условиям повышенной опасности.

Подключения выполняются через резьбовой, жесткий металлический кабелепровод с фитингами, одобренными для конкретного места эксплуатации. При сборке применяются разъемы, сертифицированные по Классу I, Раздел 1 или 2 (как требуется по проекту) для обеспечения взрывозащиты системы в целом.

ВНИМАНИЕ: Подключение и отключение проводки должно проводиться при выключенном питании. В противном случае возможна поломка двигателя и/или регулятора GOV10/50.

- 3.2 Регулятор GOV10/50 требует наличия напряжения от 20 до 32 В DC, 1 ампер, на разъеме или кабеле. Напряжение должно быть непрерывным и стабильным. Падение напряжения ниже 20 В (любой продолжительности) может привести к закрыванию клапана, после чего регулятор останется в таком положении вплоть до следующего пуска двигателя.
- 3.3 Регуляторы GOV10/50 стандартно поставляются с кабельным вводом 3/4" NPT. Резьбовой ввод применяется в опасных зонах, классифицированных по Разделу 1. В таких зонах кабель прокладывается внутри жесткого металлического кабелепровода согласно принятым правилам устройства электроустановок. Подключения должны выполняться одобренными средствами, что обеспечивает взрывозащиту системы в целом. Провода подключаются к клеммной колодке внутри блока. См. чертеж 809014.
- 3.4 При установке в зонах по Классу 1, Раздел 2, типичных для условий эксплуатации интегральных газовых двигателей-компрессоров, используется разъем армейского типа (МS). Переходник к такому разъему имеет № по каталогу 893003.
 - Вверните переходник разъема в кабельный ввод 3/4" NPT и подключите провода согласно чертежу 809020. Ответная часть кабеля CSA-сертифицирована для зон по Классу 1, Раздел 2, и обеспечивает быструю расстыковку, что значительно облегчает монтаж и техобслуживание. Подключите кабель в стандартной распределительной коробке, используя подходящие клеммные колодки. Для изменения длины кабеля см.чертеж 809019.
- 3.5 Все подключения следует выполнять экранированными витыми парами. Кабель управления регулятором должен быть проложен в отдельном кабелепроводе. Никогда не прокладывайте управляющий кабель в одном кабелепроводе с проводами питания или любыми проводами, связанными с системой зажигания двигателя.

Сечение проводников питания 24 В DC зависит от расстояния между источником питания и регулятором. Выбирайте сечение достаточным, чтобы гарантировать напряжение по крайней мере 24 В DC на разъеме питания блока. Используйте провода типа 16 AWG, № по каталогу Altronic 503188, или эквивалентные.

Проводка для дистанционного управления скоростью вращения и обратной связи по расходу (4-20 мА), а также проводка RS-485 дистанционной передачи данных могут быть длиной до 350 футов. Такие сигналы всегда чувствительны к наводкам, поэтому следует прокладывать как можно более короткие провода. Жилы уменьшенного сечения (20 AWG) можно использовать на дистанциях не более 100 футов.

Подключение магнитных датчиков выполняется экранированными витыми парами сечением 22 AWG длиной не более 50 футов. Более подробно установка датчиков показана на чертеже 809015.

3.6 Дискретный выход можно задействовать для выдачи разрешительного сигнала на подачу топлива, команды аварийного останова двигателя или сигнала о неисправности на вход системы управления двигателем, которая управляет работой запорного и перепускного клапана на входе в регулятор. Когда обороты двигателя превысят уставку CRANK RPM и время таймера продувки истечет, этот контакт замкнется, означая запрос на подачу топлива. Этот сигнал можно использовать в качестве разрешительного сигнала на подачу топлива в двигатель. Контакт разомкнется при возникновении любого условия аварийного останова, запрограммированного в регуляторе, включая низкое давление топливного газа, превышение заданной скорости вращения, высокое давление в топливном коллекторе и т. д. (см.раздел 7.11). Этот полярно-зависимый изолированный дискретный выход рассчитан на 3 ампера и пригоден для использования в последовательной цепи для управления небольшим соленоидным клапаном или реле.

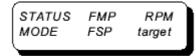
ПРИМЕЧАНИЕ: Двигатель должен быть оснащен отдельной резервной системой, которая отключит его в случае чрезмерно высокой скорости вращения.

3.7 При подключении нового блока GOV или модернизации регулятора более старой модели см.схему подключений в разделе 4.0.

4.0 ТАБЛИЦА СОЕДИНЕНИЙ БЛОКА GOV

ОБОЗНАЧЕНИЕ			ЦВЕТОВАЯ КОДИРОВКА		
Назв.контакта Контакт Назначение разъема		Контакт	Цвет жилы		
POWER(+)	А	24 В пост.тока (+)	24 В пост.тока (+) А Е		
POWER (-)	В	24В пост.тока общий (-)	В	Серый	
DEMAND (+)	С	Дист.управл. скоростью Вход 4-20 мА (+)	С	Синий	
DEMAND (-)	D	Дист. управл. скоростью Вход 4-20 мА (-)	D	Белый/синий	
A out 1 (+)	Е	Аналог.выход 1 (расход) 4-20 мА (+)	E	Желтый	
A out 1(-)	F	Аналог.выход 1 (расход) 4-20 мА (-)	F	Белый/желтый	
GT MPU	G	Магнитный датчик (А)	G	Красный/синий	
GT MPU	Н	Магнитный датчик (В)	Н	Белый/черный	
A out 2 (+)	(E)	Аналог.выход 2 (обороты) 4-20 мA (+)		Желтый/красный	
A out 2 (-)	J	Аналог.выход 1 (обороты) 4-20 мА (-)		Желтый/черный	
DSPL (+)	K	Дисплей, связь (+)	L	Серый/красный	
DSPL (-)	L	Дисплей, связь (-)	сплей, связь (-)		
Aux 2 (+)	не исп.	Дополнительный 2 (+)	N	Белый/серый	
D in 1 (+)	Р	Дискретный вход 1 (+) Местный принудит.	Р	Белый/фиолетовый	
D in 1 (-)	S	Дискретный вход 1 (-)	S	Бел./желт./коричн.	
D in 2 (+)	Т	Дискретный вход 2 (+) Заверш. прогрева	Т	Бел./оранж./синий	
D in 2 (-)	(S) *	Дискретный вход 2 (-)	U	Бел./красн./зел.	
D out (+)	U	Дискретный выход 1 (+)	V	Бел./желт./оранж.	
D out (-)	V	Дискретный выход 1 (-)	W	Бел./желт./красн.	
RTU (+)	М	Связь по MODBUS (+)		Зеленый	
RTU (-)	N	Связь по MODBUS (-)	Z	Коричневый	
Aux 2 (-)	не исп.	Дополнительный 2 (-)	а	Бел./коричневый	
Aux 1 (+)	R	Датчик давления (+)	b	Бел./красн./коричн.	
Aux 1 (-)	(B)	Датчик давления (-)	С	Бел./зеленый	

5.0 МОНТАЖ ДИСПЛЕЙНОГО МОДУЛЯ


- 5.1 Установите дисплейный модуль внутри панели управления или на подходящей ровной поверхности, предпочтительно не на двигателе, чтобы минимизировать воздействие вибрации. Следует монтировать дисплейный модуль на в ысоте, удобной для обозрения. Установочные размеры см.на чертеже 809016. Кожух NEMA 3R (720004-1) можно использовать в качестве альтернативы (опция) для монтажа дисплейного модуля (см.чертеж 809018).
- 5.2 Дисплейный модуль следует размещать в пределах 50 футов (15м) от блока GOV, который устанавливается неподалеку от двигателя.
- 5.3 Диапазон рабочих температур дисплейного модуля: от -40°F до 158°F (от -40°C до 70°C). Требования по влажности: от 0 до 95%, без конденсации. Алюминиевый кожух дисплейного модуля выполнен в брызгозащищенном исполнении, однако надо принять меры к тому, чтобы на модуль случайно не попала вода. Избегайте попадания прямого солнечного счета на ЖК дисплей и клавиатуру.

6.0 ПОДКЛЮЧЕНИЕ ДИСПЛЕЙНОГО МОДУЛЯ

- 6.1 ОБЩИЕ ПОЛОЖЕНИЯ Позаботьтесь, чтобы не повредить изоляцию проводки, примите меры по защите от вибрации, абразивного воздействия и попадания жидкости внутрь кабелепроводов. Кроме того, НЕ прокладывайте низковольтную проводку питания, управления или связи в одном кабелепроводе с проводкой зажигания и прочими силовыми цепями, например с цепями питания переменного тока и т. п. Расстояние до любой высоковольтной проводки должно быть не менее 12 дюймов.
- 6.2 ПИТАНИЕ Питание к дисплейному модулю должно подводится от блока GOV; выполняйте подключения согласно чертежа 809017. НЕ заземляйте дисплейный модуль непосредственно общий контур заземления катушек зажигания.
 - ВАЖНО: Для того, чтобы контуры заземления блока GOV и дисплейного модуля имели одинаковый потенциал, обязательно используйте шлейфовый метод подключения, как показано на чертеже 809020.
- 6.3 СВЯЗЬ Дисплейный модель общается с блоком GOV по двухпроводной шине RS-485. Подключите дисплейный модуль к блоку GOV, используя 4-проводный экранированный кабель, № по каталогу Altronic 503194-500, как показано на чертеже 809017.

7.0 БАЗОВЫЙ ЭКРАН

7.1 Базовый экран (Home Screen) предназначен для индикации текущего состояния и основных рабочих характеристик. Шаблон базового экрана содержит текстовое описание текущего состояния регулятора (STATUS) и текущего режима управления (MODE). Кроме того, шаблон содержит числовые значения давления в топливном коллекторе (FMP), давления топлива на входе в регулятор (FSP), фактической скорости вращения двигателя (RPM) и заданную номинальную скорость (target).

7.2 Приведенный ниже пример базового экрана описывает двигатель, работающий с частотой 300 об/мин, давление в топливном коллекторе составляет 29,5 PSIG. Из нижней стоке понятно, что в режиме управления местном (LOCAL) задана номинальная скорость вращения в 300 об/мин, а давление топлива на входе в регулятор составляет 55,0 PSIG.

RUN 29.5 300 LOCAL 55.0 300

Ниже приведена расшифровка терминов текущего состояния и описаны условия:

READY («ΓΟΤΟΒ»)	Двигатель остановлен, находится в состоянии готовности к пуску.
NOTRDY («HE ГОТОВ»)	Двигатель остановлен, однако значения FMP или FSP превышают заданные пороговые значения.
ROTATE («ПРОКРУТКА»)	Обнаружено вращение двигателя, однако обороты слишком малы, чтобы начать продувку.
PURGE («ПРОДУВКА»)	Двигатель вращается, подача топлива перекрыта, ведется продувка двигателя от остатков топлива.
PURGED («ПРОДУТ»)	Продувка двигателя закончена, цифровые выходы активированы, ожидается подача топлива в регулятор.
START («ПУСК»)	В двигатель подается топливо, чтобы обеспечить его пуск согласно заложенной программе.
WARMUP («ΠΡΟΓΡΕΒ»)	Скорость вращения двигателя говорят об успешном зажигании, система управления поддерживает минимальные обороты.
RUN («РАБОТА»)	Прогорев завершен, система управления поддерживает номинальные обороты.
SHUTDN («ГЛУШЕНИЕ»)	Выполняется программа глушения двигателя; сообщение сохранится в течение 30 сек после достижения 0 об/мин.
FAULT («СБОЙ»)	Обнаружен сбой в работе регулятора. Выясните

причину, прежде чем повторить пуск.

7.3 Приведенный ниже пример базового экрана о писывает остановленный двигатель в состоянии готовности (READY), давление в продутом топливном коллекторе составляет 0,0 PSIG, а давление на входе в регулятор равно 0,1 PSIG. Нижняя строчка говорит о том, что после завершения прогрева будет действовать уставка скорости вращения в 300 об/мин, управляемая контуром обратной связи по току.

READY 0.0 0 LOOP 0.1 300

Ниже приведены описания режимов управления (MODE):

LOCAL Принимается местная уставка скорости. Все дистанционные («МЕСТНЫЙ») источники управления заблокированы, если на экране настроек дистанционного управления выбрано значение OFF («ВЫКЛ.»). LOCAL+ Местное управление подавляется. Дистанционное управление («МЕСТНЫЙ +») скоростью вращения активно, когда на экране настроек дистанционного управления выбрано значение ON («ВКЛ.»). однако дистанционные источники будут заблокированы при активации цифрового входа 1, который переводит систему в режим принудительного местного управления. LOCAL* Местное управление подавляется. Дистанционное управление («МЕСТНЫЙ *») скоростью вращения активно, когда на экране настроек дистанционного управления выбрано значение ON («ВКЛ.»); если сигнал управления выходит за пределы заданного диапазона и запись во входной регистр MODBUS RTU не производится, система по-умолчанию вернется к местному режиму управления. LOOP («КОНТУР») Дистанционная уставка скорости ПО запросу контура управления. **MODRTU** Peructp MODBUS RTU для дистанционного задания оборотов достоверен и обновляется ежесекундно. ###SEC («###CEK») Оставшееся время ожидания в режимах PURGE (продувка).

PURGED (продут) и WARMUP (прогрев).

7.4 Приведенный ниже пример базового экрана описывает остановленный двигатель в состоянии неготовности (NOT READY), что означает, что FMP или FSP превышают пороговые значения, заданные для состояния READY. Когда давление превышает пороговое значение состояния готовности, выводится символ «>», а также численное значение уставки. Данное сообщение говорит о том, что запускать двигатель небезопасно, так как давление топлива превышает значение, ожидаемое для штатного состояния останова.

Слишком высоко давление в топливном NOTRDY 6.2> 2.5 коллекторе (FMP) LOCAL 0.1 300 Слишком высоко давление топлива на входе NOTRDY 0.0 регулятора (FSP) LOCAL 5.1> 3.0 Как FMP, так и FSP превышают пороговые NOTRDY 6.2> 2.5 значения LOCAL 5.1> 3.0

7.5 Экран прокрутки ROTATE (см.ниже) появляется в том случае, когда двигатель вращается со скоростью ниже уставки Crank RPM. Двигатель вращается, однако его скорость недостаточна для начала цикла продувки. Если обороты упадут до нуля, двигатель вернется в состояние готовности.

7.6 Цикл продувки (PURGE) начинается, когда обороты двигателя превысят уставку Crank RPM. Время до окончания продувки показано в левом нижнем углу. Уставка скорости вращения (300 об/мин) также отображается; по окончании прогрева двигателя она будет целью управления. Таймер продувки будет запущен заново, если обороты упадут ниже уставки Crank RPM. Попытки запуска будут блокированы, если FMP (давление в топливном коллекторе) окажется выше порога готовности.

7.7 Экран состояния PURGED говорит о том, что цикл продувки завершен и выдан сигнал запроса на подачу топлива. Система останется в состоянии PURGED в ожидании достаточного давления на входе в регулятор (FSP). Если в течение заданного интервала FSPabortsec (в секундах) давление FSP так и не достигнет достаточной величины, пуск двигателя будет отменен. На экране ниже также показано минимальное текущее значение FSP вместе с символом «<», что свидетельствует о недостаточно высоком давлении на входе в регулятор.

7.8 Экран состояния START говорит о том, что в регулятор поступает достаточное количество топлива и он занят тем, что заправляет двигатель топливом для последующего пуска. Попытка пуска начнется, как только скорость двигателя превысит уставку пусковых оборотов (Start RPM), которая показана в правом нижнем углу индикатора. Попытка пуска будет прекращена, если двигатель не удалось запустить в пределах заданного временного интервала (Start Seconds) или если давление в топливном коллекторе превысит уставку максимального значения (Hi Start FMP).

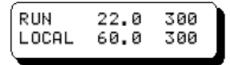
7.9 Экран состояния WARMUP говорит о том, что двигатель работает и переход от режима заполнения топливом к режиму постоянной скорости завершен. Период прогрева будет продолжаться в течение заданного интервала (Warmup Seconds), после чего текущая скорость станет целью управления. В ходе прогрева двигатель работает на минимальной скорости (Minimum RPM), заданной при выборе параметров конфигурации.

WARMUP 14.3 75 6sec 55.2 220

7.10 Экран состояния RUN будет встречаться чаще всего; он говорит о том, что двигатель работает в штатном режиме. На экран выводятся данные о давлении в топливном коллекторе, текущие обороты двигателя, режим управления, давление топлива на входе регулятора, а также уставка номинальной скорости.

RUN 29.5 300 LOCAL 55.0 300

7.11 Единственное состояние, в которое регулятор может перейти из режима штатной работы — это режим глушения (ShutDN). Причин, вызывающих останов двигателя, может быть несколько, но наиболее общей является низкое давление топлива на входе в регулятор (см.пример ниже), что считается «штатным» методом. Обычно оператор или система безопасности прекращает подачу топлива, чтобы вызвать останов двигателя. В течение 3 секунд после остановки двигателя информация сохраняется на экране, после чего двигатель перейдет либо в состояние готовности (READY), либо неготовности (NOT READY).


ShutDN 0.5 121 STOP=LoFSP

Ниже перечислены все причины, вызывающие останов двигателя:

STOP = LoFSPозначает штатный останов, т. е. низкое давление топлива на входе в регулятор STOP = HiFMP повышенное давление топлива STOP = OvrSPD превышение максимальной скорости вращения STOP = LoRPMсамопроизвольная остановка или потеря сигнала датчика STOP = HiSCFM перегрузка относительно подачи топлива STOP = HiSCFR перегрузка относительно крутящего момента STOP = WaitFSP останов по завершению работы таймера FSP STOP = StartTIME попытка пуска прервана по завершении работы таймера STOP = AbortFMPпопытка пуска прервана, т.к. давление в топливном коллекторе (FMP) превысило заданный порог AbortFMP STOP = sawFSPозначает, что FSP превысило порог FSPrdy еще до перехода к состоянию PURGED STOP = sawFMP означает, что FMP превысило порог FMPrdy еще до перехода к циклу START STOP = FAULT сбой регулятора или системы управления **POWERUP** отсутствие вращение двигателя после включения питания

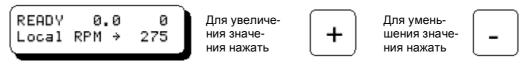
8.0 ЭКРАНЫ ПАРАМЕТРОВ

8.1 Различные экраны параметров, измеренных или расчетных, отображаются на дисплее. К этим экранам можно перейти из базового экрана, нажимая клавиши «стрелка вверх/вниз» для прокрутки вперед или назад.

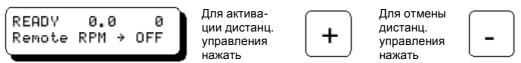
Для индикации след. значения нажать

Для индикации предыд. значения нажать

RUN 22.0 300 $FMP_PSIG = 22.00$ $FSP_PSIG = 60.00$ $FCP_PSIG = 35.00$ $AMP_inH9 = 13.20$ ACT_cnts = 2025 ACT_PSI = 13.00Aux1_mA = 10.00 Aux2_mA = 10.00 DemandRPM = 250 Demand_mA = 17.05FuelTemp = 78°F DeltaPSI = 1.24 Flow_SCFM = 314 Flow_SCFR=0.2184

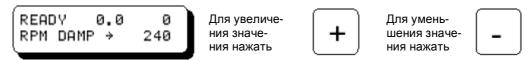

9.0 ЭКРАНЫ НАСТРОЕК

9.1 В системе GOV предусмотрено два уровня переменных, которые может редактировать оператор. На первом уровне располагаются экраны настроек (SETUP). Это переменные и опции, которые обычно подстраиваются при эксплуатации двигателя. Для доступа к этим переменным надо просто нажать клавишу SETUP.

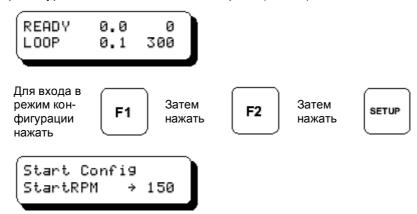


Горизонтальная стрелка на экране SETUP всегда указывает на переменную, доступную для редактирования. Внесенные изменения сохраняются немедленно и остаются вплоть до следующего сеанса редактирования.

9.2 Отредактируйте уставку местной скорости вращения (Local RPM); это скорость, на которой будет работать двигатель, когда активирован режим местного управления с дисплейного модуля. После завершении работы таймера прогрева эта величина будет целью управления.


9.3 Активируйте режим дистанционного управления (Remote RPM); включается и выключается клавишами +/-. При выборе OFF (ВЫКЛ.) отменяется режим дистанционного управления. При выборе ON (ВКЛ.) активируется режим дистанционного управления либо входным сигналом 4-20 мА, либо перезаписью в регистр уставки скорости MODBUS.

9.4 Используйте клавишу «+» для принудительного завершения работы таймера прогрева. Эта функция также доступна дистанционно путем кратковременной активации цифрового входа 2.


9.5 Отредактируйте параметр RPM DAMP для изменения фильтрации, связанной с величиной RPM на дисплее. Значение 0 означает отсутствие фильтрации, 254 соответствует максимальной фильтрации. Заводская уставка по умолчанию составляет 240.

10.0 ОБЗОР ЭКРАНОВ КОНФИГУРАЦИИ

10.1 Другая группа переменных, которые может редактировать оператор, называется экранами конфигурации (CONFIGURATION). Эти параметры должны быть заданы до начала эксплуатации двигателя. При нормальной эксплуатации редактировать их приходится нечасто, поэтому предусмотрена парольная защита, чтобы ограничить доступ к ним для неквалифицированного персонала.

Процедура начинается с базового экрана (НОМЕ).

10.2 Параметры КОНФИГУРАЦИИ разбиты на несколько функциональных групп. Название группы высвечивается в верхней строчке индикатора. Группы следующие: Start Config («Конфигурация режима пуска»), Start Control («Управление пуском»), RPM Control («Управление оборотами»), Flow Config («Конфигурация расхода»), Engine Config («Конфигурация двигателя»), Sensor Config («Конфигурация датчиков»), Hardware Config («Конфигурация аппаратной части») и Analog OUT Config («Конфигурация аналоговых выходов»). В режиме конфигурации для перехода от группы к группе можно использовать клавишу SETUP. Группы организованы так, чтобы первыми высвечивались наиболее часто редактируемые параметры.

Для перехода к след. группе нажать

10.3	Для перемещения между экранами в пределах каждой группы служат клавиши «стрелка вверх/вниз».
	Для перехода к следующей переменной нажать Для перехода к предыдущей переменной нажать
10.4	Клавиши «+» и «-» используются для увеличения или уменьшения численного значения переменной.
	Для увеличе- ния значения нажать — Для уменьше- ния значения нажать —
	Горизонтальная стрелка на экране CONFIGURATION всегда указывает на переменную, доступную для редактирования. Внесенные изменения сохраняются немедленно и остаются вплоть до следующего сеанса редактирования.
<u>11.0</u>	ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ «START CONFIG»
11.1	Введите скорость вращения StartRPM — это скорость, при которой двигатель вращается самостоятельно; очень часто ее называют скоростью пуска. После выхода на эти обороты регулятор переключается из режима управления пуском в режим управления скоростью вращения, при этом он увеличит скорость вращения двигателя до заданной минимальной скорости Minimum Speed. Численное значение данного параметра должно быть выше наибольших оборотов прокрутки (Crank RPM), но ниже минимальной рабочей скорости (RUN RPM).
	Start Config Для увеличе- StartRPM → 150 Ния значе- ния нажать ния нажать
11.2	Давление при пуске в топливном коллекторе StartFMP — это желаемое давление топлива (в PSIG) при пуске. Регулятор будет поддерживать давление в топливном коллекторе на основе этого значения вплоть до достижения пусковых оборотов START RPM.
	Start Confi9
	Или расход топлива при пуске StartSCFR, необходимый для пуска в режиме SCFR. Режим пуска можно выбрать в меню конфигурации двигателя (Engine Config), п.15.12. Отметим, что этот параметр доступен только в новой версии 2.0.
	Start Config Для увеличе- ния значе- ния нажать Для умень- шения значе- ния нажать —

11.3	Функция возрастания давли использоваться для подъема показано, что в режиме пуска Давление в топливном колл запустится или не будет дости эта функция не доступна.	давление будет е екторе будет рас	пуске двигателя. жесекундно повы ти до тех пор,	шаться на 0,10 PSI. пока двигатель не
	Start Config RampFMP → 0.10	Для увеличе- ния значе- ния нажать	+ Для уг шения ния на	значе-
11.4	Параметр AMPbias (опция) по воздушном коллекторе (AMP) возможность изменения текуц поскольку оно может изменить внешний AMP-датчик. В режим	в PSIG / inHG. П цего давления согл ься при пуске. Для	ри запуске в реж пасно изменениям применения этой	име FMP создается и давления воздуха, і функции требуется
	Start Config AMPbias > 0.00	Для увеличе- ния значе- ния нажать	Для уг шения ния на	значе-
11.5	Введите максимальное давлен запуске. Используйте этот повышения давления топливынужного при пуске предела. В р	параметр для огр а как функции да	раничения скорос вления в воздуц	сти изменения или ном коллекторе до
	Start Config LimitFMP → 15.00	Для увеличе- ния значе- ния нажать	Для уг шения ния на	значе-
11.6	Ведите максимальное давлен запуске. Используйте этот паравыше которого пуск должен бы	аметр для определ	ения максимально	ого порога давления,
	Start Config AbortFMP → 18.00	Для увеличе- ния значе- ния нажать	Для уг шения ния на	значе-
11.7	Введите максимальное время топливом в режиме START, прервана.			
	Start Config AbortSEC → 20	Для увеличе- ния значе- ния нажать	Для уг шения ния на	значе-
11.8	Введите максимальное время с уровень после продувки, после прервана.			
	Start Config FSPabortsec> 20	Для увеличе- ния значе- ния нажать	Для уг шения	значе-

12.0 ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ ПЕРЕМЕННЫХ «START CONTROL»

12.1 Введите величину ошибки SCFR, при которой применяется максимальный управляющий отклик регулятора. В режиме SCFR этот параметр обозначается MaxErrSCFR (новое для версии 2.0).

Start Control RateLimPSI→ 5.00

Для увеличения значения нажать

Для уменьшения значения нажать

12.2 Введите максимальную скорость, с которой регулятор будет пытаться изменить давление топлива, чтобы поддерживать заданное значение, в PSI/SEC. В режиме SCFR этот параметр обозначается MaxRateSCFR.

Start Control MaxPSIRate÷5.000 Для увеличения значения нажать

Для уменьшения значения нажать

12.3 Введите предел для ошибки PSI/SEC, чтобы ограничить управляющий отклик в экстремальном переходном режиме. В типичном случае для этого надо удвоить значение MaxPSIRate. В режиме SCFR этот параметр обозначается RateLimSCFR.

Start Control PSIerrLim⇒10.000

Для увеличения значения нажать

Для уменьшения значения нажать

12.4 Уставка GainPSI определяет отклик контура управления давлением топлива при пуске (PSI). Более высокие значения вызывают более значительный отклик на ошибки psi/sec. Каждый шаг в интервале от 1 до 255 вызывает 2%-ное изменение к-та усиления в управляющем контуре. Типичные значения от 125 до 200. Более высокие значения к-та усиления типичны для мощных двигателей и высоких рабочих давлений. В режиме управления SCFR к-т усиления обозначается GainSCFR.

Start Control GainPSI → 175

Для увеличения значения нажать

Для уменьшения значения нажать

12.5 Темп сброса (Reset Rate) в режиме управления PSI/SEC задает время, отводимое системе для полной реализации пропорционального отклика в секундах (от 0,01 до 9,99). Корректируйте этот параметр в целях компенсации объема топливноого коллектора и расхода газа. Более крупные коллекторы обычно требуют большего значения Reset Rate, в то время как проекты с большим расходом могут потребовать уменьшения Reset Rate. Типичные значения от 0,10 до 1,00. В режиме управления SCFR темп сброса обозначается RstRateSCFR.

Start Control RstRatePSI→ 0.20 Для увеличения значения нажать

Для уменьшения значения нажать

12.6 Введите значение Actuator Kick для расчета начальных характеристик открывания клапана в конкретном проекте. Эта величина представляет собой число начальных выходных импульсов исполнительного устройства при первом открытии клапана. Этот параметр компенсирует особенности двигателя и производственные допуски конструкции клапана (интервал 0-1000).

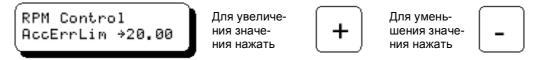
 Start Control
 Для увеличения значения нажать
 Для уменьшения значения нажать
 —

13.0 ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ ПЕРЕМЕННЫХ «RPM CONTROL»

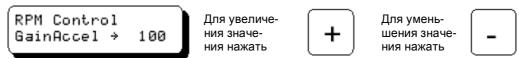
13.1 В регуляторе Altronic GOV реализован собственный алгоритм управления скоростью, специально оптимизированый для газовых двигателей. Типичный управляющий газовым двигателем, использует ассиметричный алгоритм во избежание проблем с управлением частотой вращения вследствие неодинакового поведения двигателя в нагруженном и ненагруженном состоянии. При малой нагрузке зачастую возникают пропуски зажигания. При этом цилиндр, в котором возникли пропуски зажигания, не участвует в создании крутящего момента, независимо от количества поданного в цилиндр топлива. Регулятор, который по большому счету измеряет лишь обороты двигателя, попытается, конечно же, увеличить подачу топлива в цилиндры, поскольку частота вращения падает. При пропусках зажигания, однако, следующий разряд часто бывает успешным, вызывая возрастание скорости даже без увеличения подачи топлива регулятором. Когда же регулятор после пропуска зажигания увеличит подачу топлива (как это обычно и происходит), следующий успешный разряд вызовет значительно большее ускорение, чем требуется, поэтому частота вращения очень быстро превысит желаемое значение. Это происходит несмотря на то, что лишь одним тактом ранее в результате пропуска зажигания скорость двигателя была ниже заданного значения.


К сожалению, при малой нагрузке двигателя, практически каждый успешный разряд (независимо от подачи топлива) потенциально способен значительно повысить частоту вращения. Более того, поскольку двигатель ненагружен, силы, способные вызвать его замедление, минимальны. Сочетание этих факторов ухудшает стабильность двигателя при малой нагрузке и поддерживает тенденцию «разноса», т.е. неконтролируемого возрастания частоты вращения. И наоборот, при работе под нагрузкой максимальны силы, препятствующие ускорению, и разряд в каждом цилиндре необходим, чтобы поддерживать заданную скорость. При работе двигателя под полной нагрузкой силы, вызывающие его замедление, минимальны. Поэтому полностью нагруженный двигатель имеет тенденцию к потере частоты вращения при дальнейшем увеличении нагрузки.

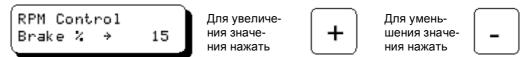
Для компенсации этих эффектов регулятор Altronic GOV непрерывно отслеживает ускорение и замедление двигателя и рассчитывает текущее оптимальное ускорение или замедление в зависимости от величины отклонения текущей частоты вращения от заданного значения. Оптимальное ускорение или замедление для данного двигателя одинаково при различных нагрузках, однако корректировка топливоподачи должна быть различной для получения оптимальных изменений. Сравнивая измеренное ускорение с оптимальным для данной ошибки, регулятор меняет подачу топлива так, чтобы своевременно обеспечить возврат двигателя к заданной частоте. Этот принцип позволяет использовать один и тот же набор параметров для управления как легко- так и тяжело-нагруженным двигателем.


13.2 Параметр AccLimRPM используется для ограничения амплитуды ошибки частоты вращения (RPM), используемой логическими цепями регулятора. Он позволяет организовать агрессивный управляющий отклик, если ошибка RPM незначительна, путем ограничения входного сигнала ошибки, когда ошибка частоты велика. Управляющий отклик будет возрастать пропорционально величине ошибки до тех пор, пока ее амплитуда не окажется ограниченной значением параметра AccLimRPM. Опыт эксплуатации п оказал, что для большинства двигателей лучше всего работает значение, равное 40 (рекомендованное). Диапазон значений этого параметра следует ограничить от 20 до 60.

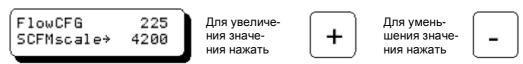
RPM Control
Для увеличения значения нажать
Для уменьшения значения нажать
Для уменьшения значения нажать
—


13.3 Параметр MaxAccRate определяет максимальное ускорение или замедление, с которым выполняется поиск оптимальной частоты вращения. Тем выше этот параметр, тем быстрее регулятор отыщет номинальную частоту. Текущее ускорение определяется в долях от MaxAccRate на основе ошибки RPM. По мере того, как ошибка RPM снижается от AccLimRPM до нуля, ускорение снижается от MaxAccRate до нуля. Опыт эксплуатации показал, что для большинства двигателей лучше всего работает значение, равное 40,00 RPM/SEC (рекомендованное). Диапазон значений этого параметра следует ограничить от 5 до 50 RPM/SEC.

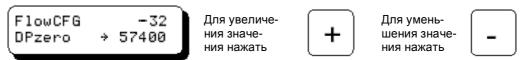
13.4 Параметр AccErrLim используется для ограничения амплитуды ускорения двигателя, которая применяется при расчете ошибки ускорения. Чем меньше этот параметр, тем меньше дифференциальная составляющая управления скоростью, и наоборот. Значение этого параметра, равное 50% от MaxAccRate дает наиболее сбалансированный управляющий отклик.



13.5 Параметр GainAccel определяет отклик регулятора на ошибку ускорения и скорости двигателя, рассчитанную для последнего оборота с учетом выше рассмотренных параметров. Чем выше значение, тем значительнее отклик регулятора на ошибку ускорения. Каждый шаг в интервале от 1 до 255 дает 2%-ное изменение к-та усиления в управляющем контуре. Типичные значения от 50 до 150. Более высокие значения к-та усиления типичны для мощных двигателей и высоких рабочих давлений.


13.6 Параметр Reset Rate для управления ускорением задает время, отводимое системе для полной реализации пропорционального отклика, в секундах (от 0.01 до 9.99). Этот параметр настраивается в целях к омпенсации объема топливного коллектора и расхода топлива. Более крупные коллекторы имеют тенденцию требовать более продолжительного времени, в то время как приложения с высоким расходом могут нуждаться в более коротком интервале. Типичные значения от 0,10 до 1,00. RPM Control Для увеличе-Для уменьния значешения значе-RstRateAcc →0.50 ния нажать ния нажать 13.7 Если текущая скорость двигателя превышает уставку более чем на 15% (Overspeed

13.7 Если текущая скорость двигателя превышает уставку более чем на 15% (Overspeed минус Setpoint), активируется режим агрессивного отклика для снижения оборотов. Рекомендуется устанавливать 15%; регулировка в диапазоне от 1% до 50%.



14.0 ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ ПЕРЕМЕННЫХ «FLOW»

14.1 Данный скалярный параметр следует откалибровать, когда двигатель работает с точно известным расходом топлива (измеренным калиброванным расходомером). Прим: Для системной версии 2.0 типичный диапазон этого параметра несколько ниже.

14.2 Этот параметр следует откалибровать так, чтобы датчик дифф.давления показывал -32 при выключенном двигателе и отключенном автоматическом обнулении (DP_AZ).

14.3 Функция автоматического обнуления впервые реализована в версии 2.0. С этого экрана ее можно активировать и деактивировать. Выбором значения (ON) активируется автоматическое обнуление датчика дифф.давления, при этом регулятор должен находится в состоянии готовности (Ready), а все датчики давления в пределах 2,5 PSI от нуля.

```
ГомСГС — 16

DZ_AZ→ ON +16

Для актива-

ции автом.

обнуления

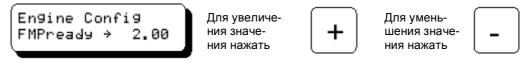
нажать

Для отклю-

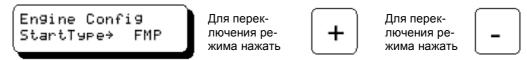
чения авто-

мат.обнуле-

ния нажать
```


14.4	Параметр SCFM SD, отражающий повышенный расход топлива в минуту, при котором двигатель должен быть заглушен, следует определить на уровне ~110% от расхода топлива SCFM, измеренного, когда двигатель развивает максимальную мощность.				
	FlowCFG 212 SCFM SD → 250 Для увеличения значения значения нажать — ния нажать —				
14.5	Параметр SCFR SD, отражающий повышенный расход топлива на один оборот, при котором двигатель должен быть заглушен, следует определить на уровне ~125% от расхода топлива SCFR, измеренного, когда двигатель развивает максимально допустимый крутящий момент. Примечание: В версии 2.0 изменена дискретность этого параметра. Для отключения данной функции введите 6.5535.				
	FlowCFG 16.4 SCFR SD ⇒1.1250 Для увеличения значения значения нажать + шения значения нажать				
14.6	Минимальная продолжительность переходных процессов (в секундах) до останова двигателя по параметрам SCFM или SCFR.				
	FlowCFG SCF×SDsec→ 5 Для увеличе- ния значе- ния нажать Для умень- шения значе- ния нажать —				
<u>15.0</u>	ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ ПЕРЕМЕННЫХ «ENGINE»				
15.1	Минимальная скорость вращения, которая может быть запрошена при работе двигателя. Относится ко всем источникам управления: местному, дистанционному или по шине Modbus. Введите здесь минимально допустимую для вашего проекта скорость вращения.				
	Engine Config Для увеличения значения значения нажать Для уменьшения значения нажать				
15.2	Максимальная скорость вращения, которая может быть запрошена при работе двигателя. Относится ко всем источникам управления: местному, дистанционному или по шине Modbus. Введите здесь максимально допустимую для вашего проекта скорость вращения.				
	Engine Config Для увеличе- МахRPM → 300 Ния значе- Ния значе-				

	_				
15.3	Скорость вращения, при кот команду на глушение двигателя				ющий
	ПРИМЕЧАНИЕ: Двигатель до системой, которая отключит е			эльной, самостоятел окой скорости враще	
	Engine Config OverspdRPM→ 330	Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	
15.4	Минимальные обороты, при кот Установите на уровне ~50% от				ателя.
	Engine Config CrankRPM → 40	Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	
15.5	Число зубьев маховика, сосчита	анных магнитным	и датчиком.		
	Engine Config GearTeeth > 360	Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	
15.6	Продолжительность прокрутки	(в секундах) пере	ед началом п	одачи топлива.	
	Engine Config PurgeSEC → 5	Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	
15.7	Интервал времени, в течение допустимые обороты, до перехо				ально
	Engine Config WarmupSEC → 30	Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	
15.8	Минимальное давление топли Если давление упадет ниже эт на индикаторе появится сообще	ого значения, ре			
	Engine Config FSPshutdn→ 60.00	Для увеличе- ния значе-	+	Для умень- шения значе-	


ния нажать ния нажать

15.9	Параметр FMPshutdn характеризует максимально допустимое давление в топливном коллекторе (PSIG). Если давление в топливном коллекторе превысит это значение, регулятор выдаст команду на глушениедвигателя, а на индикаторе появится сообщение HiFMP.
	Engine Config
15.10	Параметр FSPready характеризует максимально допустимое давление топлива на входе в регулятор (PSIG) перед пуском, которое позволит регулятору перейти в состояние готовности (READY). Если давление на входе в регулятор превышает это значение, на индикаторе появится надпись NotRDY («Не готов»); пуск будет запрещен.
	Engine Config

15.11 Параметр FMPready характеризует максимально допустимое давление в топливном коллекторе (PSIG) перед пуском, которое позволит регулятору перейти в состояние готовности (READY).

15.12 Задает режим пуска: FMP или SCFR. В режиме FMP регулятор управляет давлением в топливном коллекторе. В режиме SCFR он управляет расходом топлива на один оборот двигателя. Функция впервые реализована в версии 2.0.

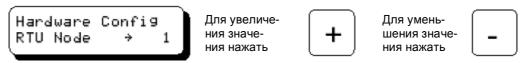
16.0 ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ ПЕРЕМЕННЫХ «SENSOR»

16.1 Для верхней границы диапазона давления на входе в регулятор (FSP.Span) заводская установка по умолчанию составляет 260,00 PSI. Для нижней границы (FSP.Zero) заводская установка по умолчанию составляет 0,00 PSI. Автоматическую компенсацию нуля в пределах до 2,5 PSI можно включить, когда регулятор находится в состоянии готовности, а все датчики показывают давление в пределах 2,5 PSI от нуля. Функция автоматического обнуления, добавленная в версии 2.0, может быть активирована и деактивирована (см.ниже).

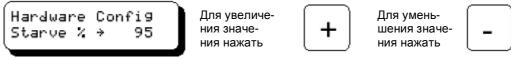
SensorCFG 0.01 FSP.Span→ 260.00	Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	_
SensorCFG 0.01 FSP.Zero→ 0.00	Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	_
SensorCFG 0.01 FSP.AZ→ Off 0.00	Для актива- ции автом. обнуления нажать	+	Для отклю- чения автом. обнуления нажать	_
SensorCFG 0.00 FSP.AZ> On 0.01	Для актива- ции автом. обнуления нажать	+	Для отклю- чения автом. обнуления нажать	_

16.2 Для верхней границы диапазона давления в топливном коллекторе (FMP.Span) заводская установка по умолчанию составляет 260,00 PSI. Для нижней границы (FMP.Zero) заводская установка по умолчанию составляет 0,00 PSI. Функция автоматического обнуления, добавленная в версии 2.0, может быть активирована и деактивирована.

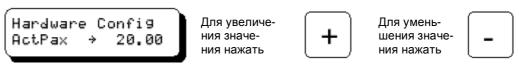
16.3 Для верхней границы диапазона давления «мускульного» газа (FSP.Span) заводская установка по умолчанию составляет 260,00 PSI. Для нижней границы (FSP.Zero) заводская установка по умолчанию составляет 0,00 PSI. Функция автоматического обнуления, добавленная в версии 2.0, может быть активирована и деактивирована.



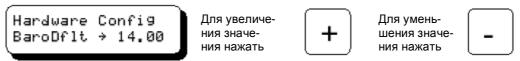
16.4 Предусмотрены функции калибровки диапазона и нуля для необязательного внешнего датчика давления в воздушном коллекторе (датчик подключается к Доп.аналоговому входу №1). Этот датчик, в типичном случае калиброванный в дюймах ртутного столба (inHG), имеет диапазон верхней границы - от 0 до 655,55, диапазон нижней границы - от -327,68 до 327,67. Процедура калибровки различна для различных типов датчиков.


17.0 ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ ПЕРЕМЕННЫХ «HARDWARE»

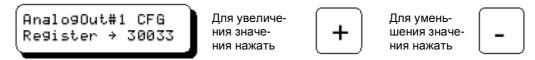
17.1 Номер узла, который будет использоваться для связи с дистанционным терминалом Modbus RTU; от 1 до 250.



17.2	Скорость обмена данными (в б Hardware Config RTU Baud → 9600	одах). Для увеличе- ния значе- ния нажать	+	Для умень- шения значе- ния нажать	-
17.3	Если текущее давление «м	иускульного» газ максимального			пределенной газа. будет


процентной доли (Starve%) максимального давления «мускульного» газа, будет запрещено увеличение расхода топлива, чтобы избежать «зависания» управляющего контура. Это происходит, когда в регулятор подается недостаточно топлива для достижения или поддержания требуемой скорости двигателя. В версии 2.0 верхний предел поднят до 150.

17.4 Если текущее давление «мускульного» газа превышает значение параметра (РА Мах), будет запрещено увеличение расхода топлива, чтобы избежать «зависания» управляющего контура. Такая ситуация возможна лишь в том случае, когда используется иной источник «мускульного» давления, нежели давление топлива на входе в регулятор.



17.5 Поправка, необходимая для пересчета абсолютного давления (PSIA) в избыточное (PSIG) на основе высоты над уровнем моря. Эта величина по умолчанию используется в случае, когда датчик атмосферного давления не установлен или не откалиброван.

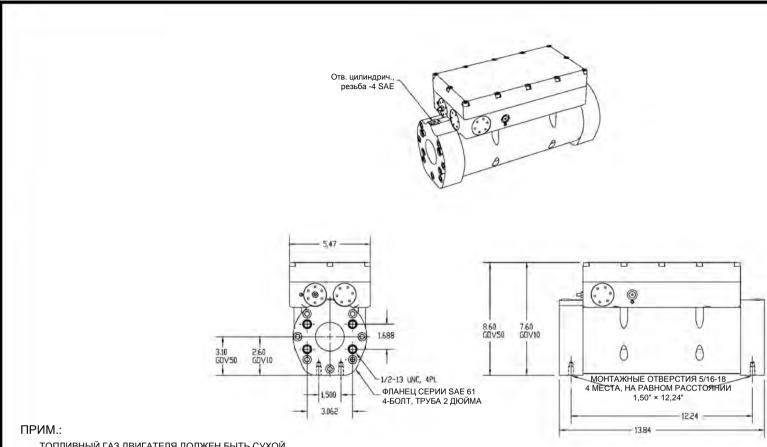
18.0 ЭКРАНЫ КОНФИГУРАЦИИ ДЛЯ ГРУППЫ ПЕРЕМЕННЫХ «ANALOG OUTPUT»

18.1 Номер регистра шины Modbus, привязанный к аналоговому выходу №1. См.перечень регистров на компакт-диске регулятора. Значение регистра № 30033 по умолчанию указывает на расход топлива в SCFM.

Прим.: Регистр 30033 SCFM определен как регистр целочисленных переменных без знака. Чтобы можно было правильно задействовать регистр переменных со знаком (напр., FMP 30025), его надо переопределить как 31025, что заставит логику регулятора воспринимать данные как переменные со знаком.

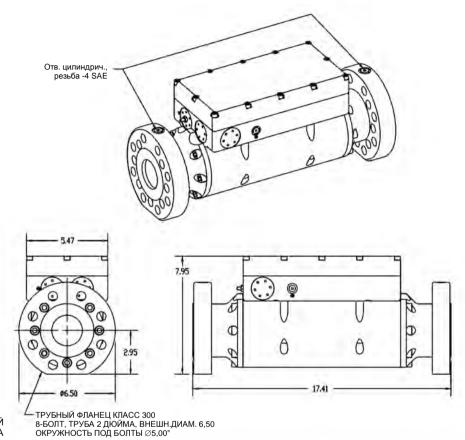
18.2	Значение в выбранном регистре для аналогового выхода № 1, соответствующее
10.2	минимальному выходному току контура управления. Нуль (по умолчанию) — это нижний предел передаваемых значений из SCFM-регистра.
	AnalogOut#1 CFG
18.3	Значение в выбранном регистре для аналогового выхода № 1, соответствующее максимальному выходному току контура управления. 500 (по умолчанию) — это верхний предел передаваемых значений из SCFM-регистра.
	AnalogOut#1 CFG Для увеличения значения значения нажать Для уменьшения значения нажать
18.4	Минимальный выходной ток, соответствующий значению, заданному в п.18.2; по умолчанию он равен 4,0 мА.
	AnalogOut#1 CFG MA.Min → 4.00 Для увеличения значения нажать Для уменьшения значения нажать
18.5	Максимальный выходной ток, соответствующий значению, заданному в п.18.3; по умолчанию он равен 20,0 мА.
	AnalogOut#1 CFG
18.6	Настраиваемая константа выходного фильтра, ее можно использовать для повышения стабильности выходного сигнала контура управления. Диапазон от 0 до 254, демпфирование тем больше, чем выше этот параметр. Функция впервые реализована в версии 2.0.
	AnalogOut#1 CFG MA.Damp → 1 Для увеличе- ния значе- ния нажать Для умень- шения значе- ния нажать —
18.7	Номер регистра Modbus, привязанный к аналоговому выходу №2. См.список регистров на компакт-диске. Значение по умолчанию (регистр № 30012) указывает на скорость двигателя в RPM (об/мин).
	Analo9Out#2 CFG Re9ister → 30012 Для увеличе- ния значе- ния нажать Для умень- шения значе- ния нажать —
	Прим.: Регистр 30012 RPM определен как регистр целочисленных переменных без

Прим.: Регистр 30012 RPM определен как регистр целочисленных переменных без знака. Чтобы можно было правильно задействовать регистр переменных со знаком (напр., FMP 30025), его надо переопределить как 31025, что заставит логику регулятора воспринимать данные как переменные со знаком.


18.8	Значение в выбранном регистре для аналогового выхода №2, соответствующее минимальному выходному току контура управления. Нуль (по умолчанию) — это нижний предел передаваемых значений из RPM-регистра.					
	AnalogOut#2 CFG Для увеличения значения значения нажать + Для уменьшения значения нажать _					
18.9	Значение в выбранном регистре для аналогового выхода №2, соответствующее максимальному выходному току контура управления. 400 (по умолчанию) — это верхний предел передаваемых значений из RPM-регистра.					
	AnalogOut#2 CFG Для увеличе- Reg.Max → 400 400 Ния значе- ния нажать Ния нажать Ния нажать					
18.10	Минимальный выходной ток, соответствующий значению, заданному в п.18.8; по умолчанию он равен 4,0 мА.					
	AnalogOut#2 CFG MA.Min → 4.00 Для увеличе- ния значе- ния нажать Для умень- шения значе- ния нажать —					
18.11	Максимальный выходной ток, соответствующий значению, заданному в п.18.9; по умолчанию он равен 20,0 мА.					
	AnalogOut#2 CFG mA.Max Для увеличе- ния значе- ния нажать + Для умень- шения значе- ния нажать _					
18.12	Настраиваемая константа выходного фильтра, ее можно использовать для повышения стабильности выходного сигнала контура управления. Диапазон от 0 до 254 демпфирование тем больше, чем выше этот параметр. Функция впервые реализована версии 2.0.					
	AnalogOut#2 CFG Для увеличе- mA.Damp → 1 Ния значе- ния нажать ния нажать					

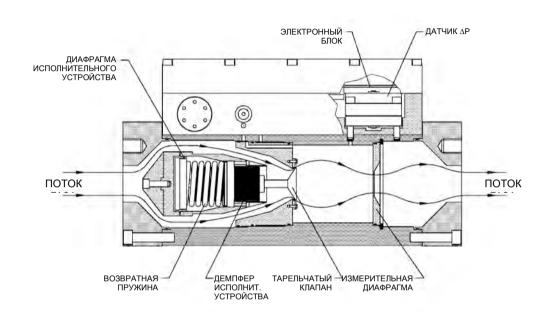
БЛАНК ПАРАМЕТРОВ И КОНФИГУРАЦИИ GOV10/50

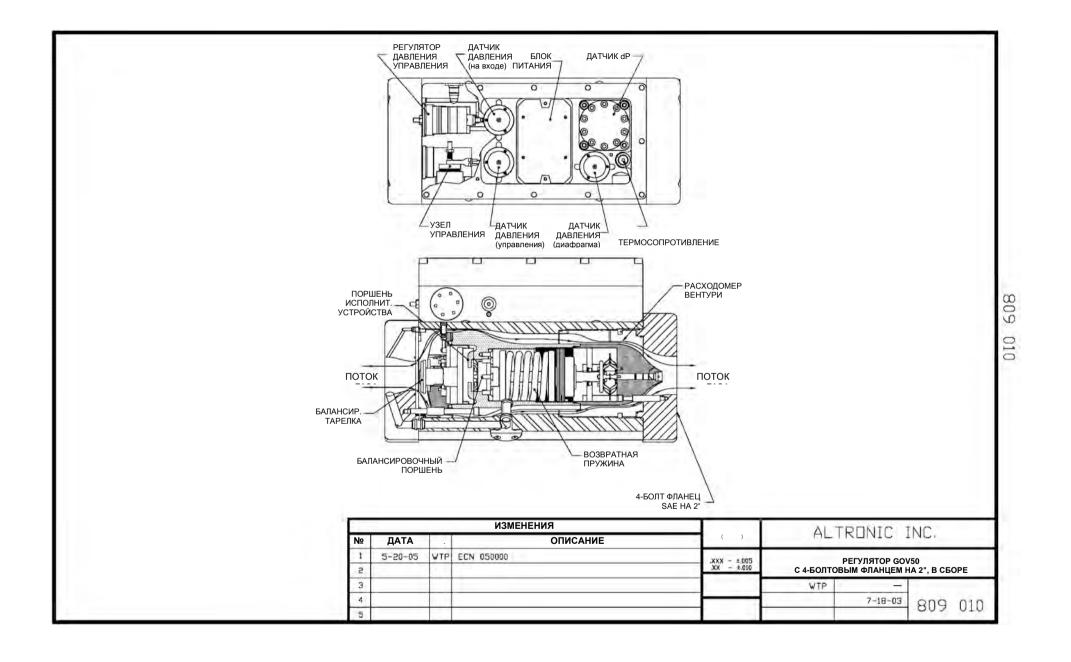
Заказчик:				Станция:			
Модель двигателя:			Блок No				
GOV P/N:	<u></u>	GOV S/N:					
<u>Setup</u>				Engine Conf			
(Настройка)				(Конфигураці			
LocalRPM		(275)[MinRPM-		MinRPM	=	(200)[1-3000]	
RemoteRPM		(OFF)[OFF, ON]	MaxRPM	=	(300)[1-3000]	
RPMDAMP	=	(240)[0-255]		OverspdRPM	=	(330)[1-3000]	
				CrankRPM	· =	(10)[1-3000]	
Start Confi	д (Конфиі	турация пуск	a)	GearTeet	.h =	(360)[60-999]	
StartRPM		(150)[1 — Min	nRPM]	PurgeSEC	=	(5)[0-999]	
StartFMP	=	(5)[0-50]	WarmupSEC	=	(30)[0-999]	
RampFMP		(0)[0-2]			(60)[0-120]	
AMPbias		(0)[0-10]			(40)[0-120]	
LimitFMP	= <u>·_</u>]			(2)[0-120]	
AbortFMP	=		1	-		(2)[0-120]	
AbortSEC	=]	-		(FMP)[FMP, SCFR]	
FSPabortsec			1	Scar crypc		(III)(III) berk)	
I DI GDOI CDCC		(20)[0 999	,	Flow Config	(Konyı	игурация расхода)	
Start Contr	ol (Vmnar	зление пуско	м)			_(~5250)[0-65535]	
RateLimPSI	_	(5)[0.50-9]				_(~58500)[0-65535]	
MaxPSIRate						_(60000)[1-65535]	
PSIerrLim		(5)[0.05-99	o 1			_(6.0000)[1-65535] _(6.0000)[0.1-6.5535]	
	<u></u> -	(10)[0.05-9	9]				
GainPSI	=	(175)[1-255]	SCFXSDSec =		_(999)[0-999]	
		(0.20)[0.01-9		G GEG	/ TC 1		
ActKick	=	(450)[0-1000]	sensor CFG	, (конфи	гурация датчиков	
				EGD G)		
		_				(~260.)[247-273]	
		ение оборота		FSP.Zero	= <u>·</u> .	(~0.00)[+/-13]	
AccLimRPM		(40)[10-500		FMP.Span	= <u>·</u> _	(~260.)[247-273]	
MaxAccRate		(40)[0.5-99		FMP.Zero	= <u>·</u> _	(~0.00)[+/-13]	
AccErrLim	= <u>·_</u> _	(20)[0.5-16	3]	FCP.Span	= <u>·</u>	(~260.)[247-273]	
GainAccel		(100)[1-255				(~0.00)[+/-13]	
RstRateAcc		(0.50)[0.01-9				(~0.00)[0-655]	
Brake %	=	(15)[1-99]	AMP.Zero	= <u>. </u>	(~0.00)[+/-327]	
		нфигурация а		юй части)			
		(1)[1-250					
RTU Baud			00,1200,	4800,9600,19.2k	,38.4k]		
Starve %	=	(95)[1-150]				
ActPmax	= <u></u> _	(20)[10-22]				
BaroDflt	= <u></u>	(14.00)[13.5-	15.5]				
				вого выхода N			
Register					.128](по	умолчанию = scfm)	
Reg.Min		(0)[0-65					
Reg.Max	=			2767]			
mA.Min	= <u></u> _	(4.00)[3.00	-25.00]				
mA.Max	=	(20.00)[3.00	-25.00]				
mA.Damp		(1)[0-254					
				вого выхода №			
Register					.128] (по	умолчанию = rpm)	
Reg.Min		(0)[0-65	535,+/-32	2767]			
Reg.Max	=			2767]			
mA.Min	= <u></u> _	(4.00)[3.00	-25.00]				
mA.Max	=	(20.00)[3.00	-25.00]				
mA.Damp		(1)[0-254					

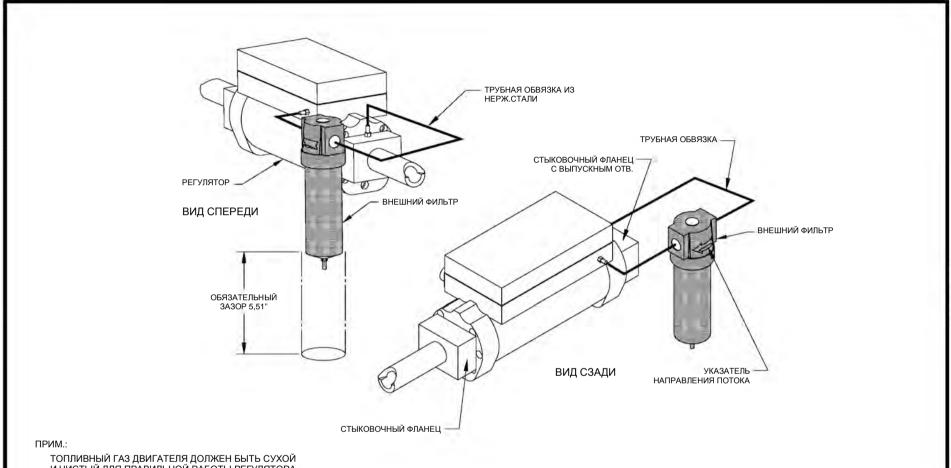

ЧЕРТЕЖИ:

809007	ГАЗОВЫЙ РЕГУЛЯТОР GOV10, С 4-БОЛТОВЫМ ФЛАНЦЕМ НА 2"
809008	ГАЗОВЫЙ РЕГУЛЯТОР GOV10, С 8-БОЛТОВЫМ ФЛАНЦЕМ НА 2"
809009	ВНУТРЕННЕЕ УСТРОЙСТВО РЕГУЛЯТОРА GOV10
809010	РЕГУЛЯТОР GOV50, С 4-БОЛТОВЫМ ФЛАНЦЕМ НА 2", В СБОРЕ
809011	РЕГУЛЯТОР GOV10 В КОНФИГУРАЦИИ С ВНЕШНИМ ФИЛЬТРОМ
809012	СТАНДАРТНЫЙ МОНТАЖ, С ВНЕШН.ФИЛЬТРОМ И ВЫПУСКНЫМ КЛАПАНОМ
809013	CXEMA УПРАВЛЕНИЯ ТОПЛИВОМ РЕГУЛЯТОРА GOV10
809014	ДЕТАЛИЗАЦИЯ РАЗВОДКИ ДЛЯ ВНЕШНИХ ПОДКЛЮЧЕНИЙ
809015	ДЕТАЛИЗАЦИЯ УСТАНОВКИ ДАТЧИКА, СИСТЕМА УПРАВЛЕНИЯ
809016	ДИСПЛЕЙНЫЙ МОДУЛЬ, РЕГУЛЯТОР
809017	ДИСПЛЕЙНЫЙ МОДУЛЬ, СХЕМА ПОДКЛЮЧЕНИЯ К РЕГУЛЯТОРУ
809018	КОЖУХ В ИСПОЛНЕНИИ NEMA 12
809019	РЕГУЛИРОВКА ДЛИНЫ КАБЕЛЕПРОВОДА ЭКРАНИРОВАННОГО КАБЕЛЯ
809020	СХЕМА ЭЛЕКТРИЧЕСКИХ ПОДКЛЮЧЕНИЙ GOV10/50

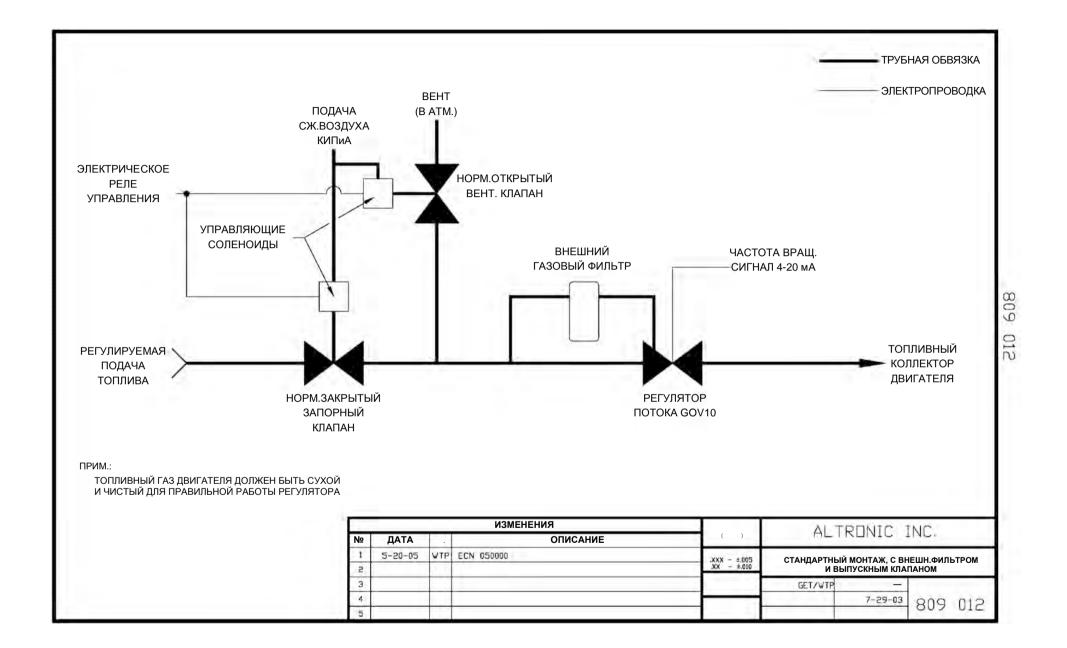
ТОПЛИВНЫЙ ГАЗ ДВИГАТЕЛЯ ДОЛЖЕН БЫТЬ СУХОЙ И ЧИСТЫЙ ДЛЯ ПРАВИЛЬНОЙ РАБОТЫ РЕГУЛЯТОРА

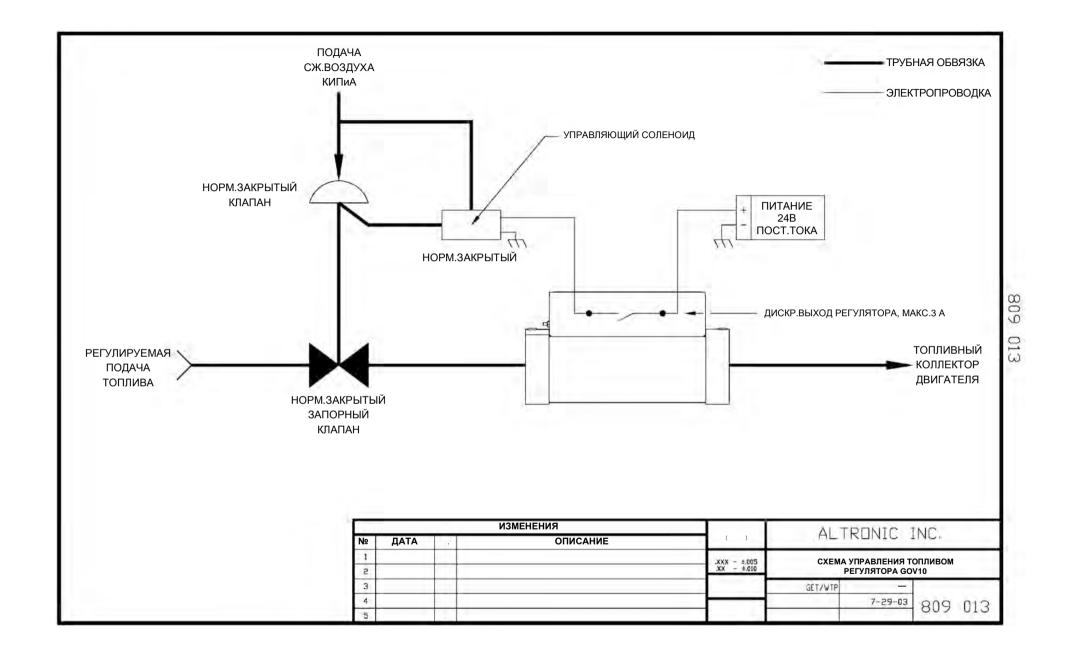

			изменения		ALTDONIC INC							
Nº	ДАТА		ОПИСАНИЕ	()	ALTRONIC INC.				AL INDINC TINC.			
1	5-20-05	WTP	ECN 050000	.XXX - ±.005								
5		14		.XX - ±.010		LEM HA 2"						
3					WTP							
4						7-18-03	ong	007				
5							007	007				

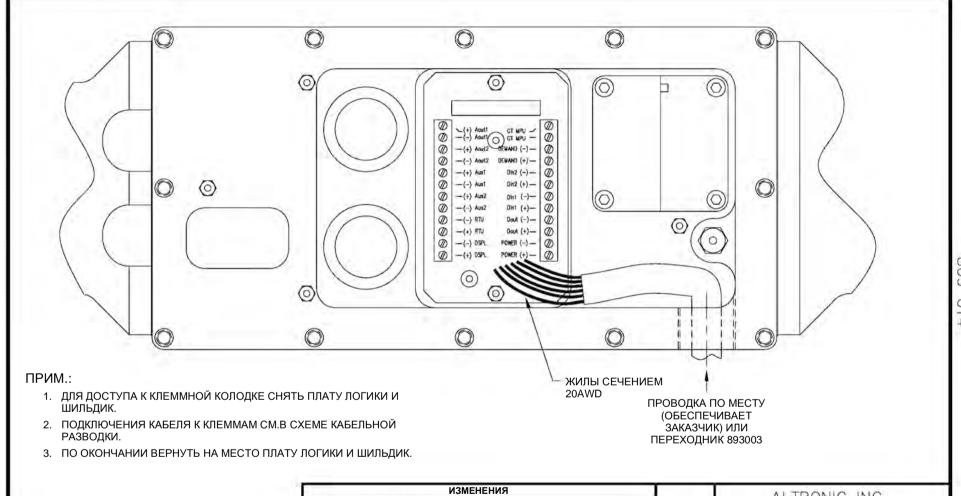

ПРИМ.:


ТОПЛИВНЫЙ ГАЗ ДВИГАТЕЛЯ ДОЛЖЕН БЫТЬ СУХОЙ И ЧИСТЫЙ ДЛЯ ПРАВИЛЬНОЙ РАБОТЫ РЕГУЛЯТОРА

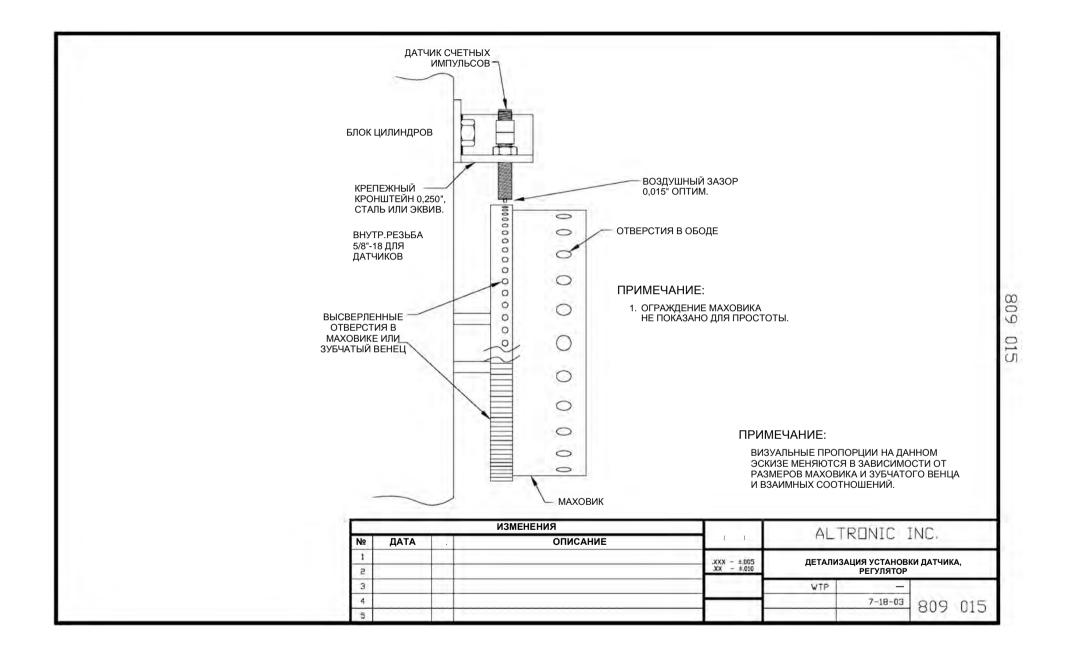
	RNHЭНЭМЕN			допуски	AL T	RUNIC 1	INC.	
Nº	ДАТА		ОПИСАНИЕ	КРОМЕ УКАЗАННЫХ)	ALIRUNIC INC.			
1	5-20-05	WTP	ECN 050000	.xxx - ±.005	ГАЗОВЫЙ РЕГУЛЯТОР GOV10			
5	11.62			.XX - ±.010	С 8-БОЛ			
3					WTP		50	
4						7-18-03	209	กกล
5		1-					000	000


		изменения		ALTERNIC THE				
Nº	ДАТА	ОПИСАНИЕ	()	ALTRUNIC INC.				
1			.XXX - ±.005 .XX - ±.010	ВНУТРЕННЕЕ УСТРОЙСТВО РЕГУЛЯТОРА GOV10				
3				WTP				
4					7-29-03	PNR	nna	
5						0	002	




ТОПЛИВНЫЙ ГАЗ ДВИГАТЕЛЯ ДОЛЖЕН БЫТЬ СУХОЙ И ЧИСТЫЙ ДЛЯ ПРАВИЛЬНОЙ РАБОТЫ РЕГУЛЯТОРА

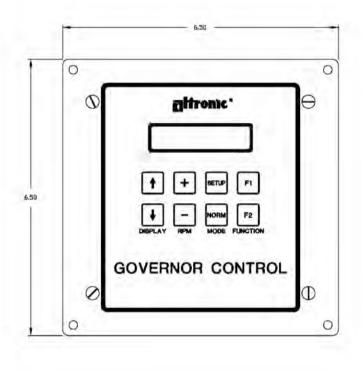
			изменения		AL T	BUNIC I	NC	
Nº	ДАТА		ОПИСАНИЕ	()	РЕГУЛЯТОР GOV10 В КОНФИГУРАЦИИ С ВНЕШНИМ ФИЛЬТРОМ			
1	5-20-05	WTP	ECN 050000	.xxx - ±.005				
2				.XX - ±.010				
3					WTP			
4						7-30-03	909 011	
5							007 011	

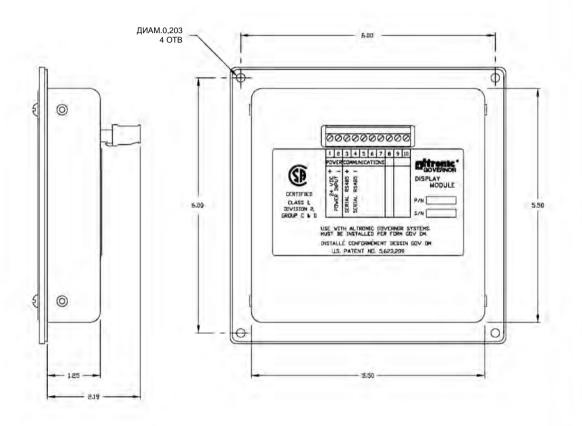


			изменения		ALTRONIC INC				
Nº	ДАТА		ОПИСАНИЕ	()	ДЕТАЛИЗАЦИЯ РАЗВОДКИ				
1		1111.		.XXX - ±,005					
2				.XX - ±.010	для в	ОЧЕНИЙ			
3					WTP	_			
4						7-29-03	809 014		
5							003 014		

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

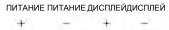
ПИТАНИЕ: 24В ПОСТ.ТОКА ПРИ 150 мА НОМИН., 32В ПОСТ.ТОКА ПРИ 250 мА МАКС.

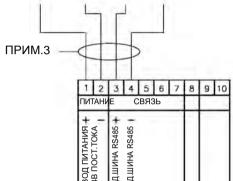

КОЖУХ: УСТОЙЧ.К ПОГОДНЫМ ВОЗДЕЙСТВИЯМ,


АЛЮМИНИЕВЫЙ С НАПЫЛЕНИЕМ

809 016

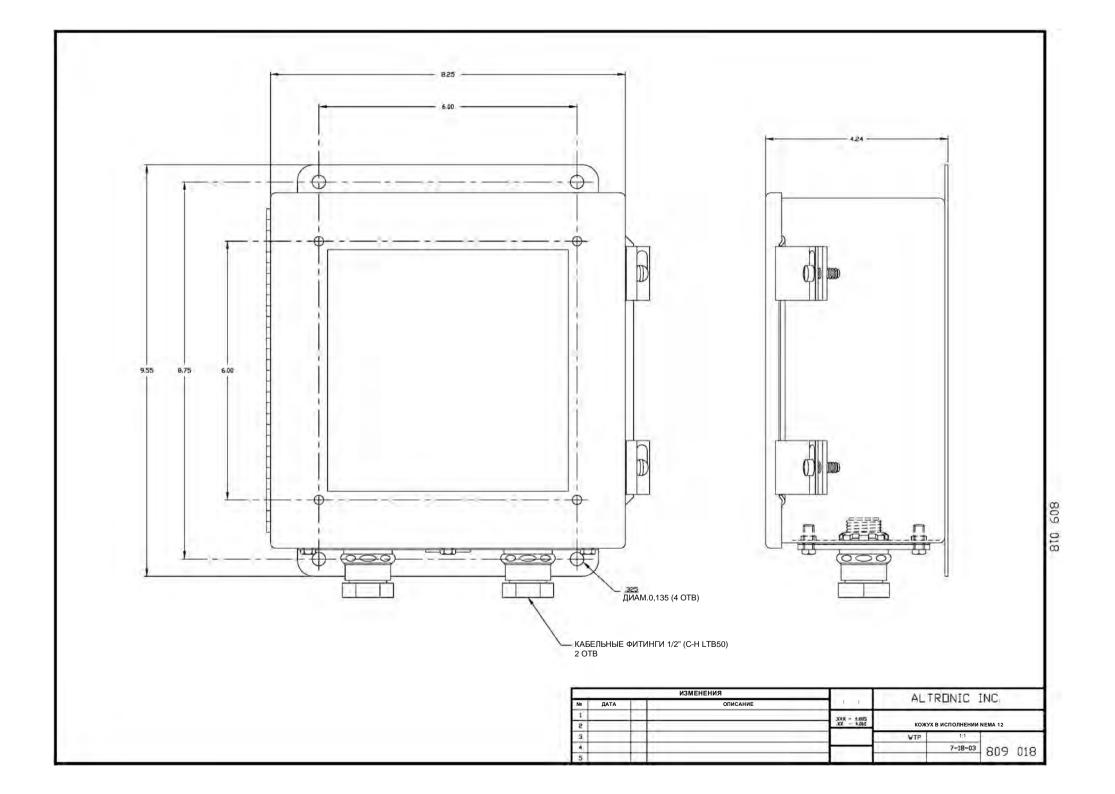
СОЕДИНЕНИЯ ПО МЕСТУ: КЛЕММНЫЕ КОЛОДКИ НА ЗАДНЕЙ ПАНЕЛИ

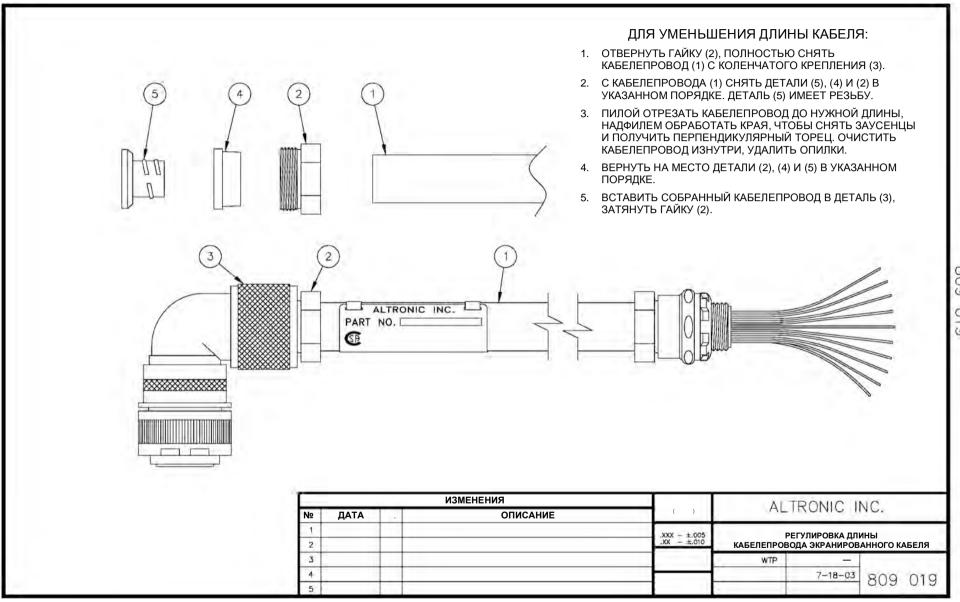

УПРАВЛ.ВХОДЫ: ПОСЛЕД.КОММУНИКАЦИОННЫЙ ПОРТ RS485

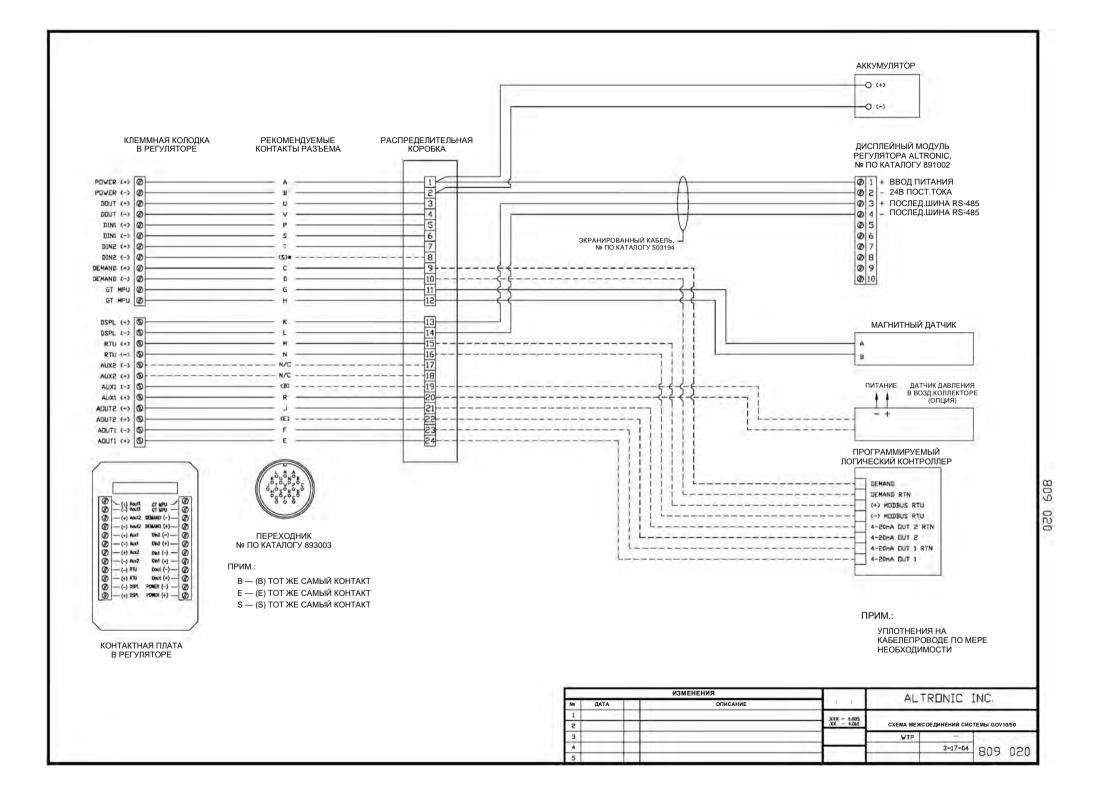


	изменения				AL T	DUNITO	NIC		
Nº	ДАТА		ОПИСАНИЕ	()	ALTRONIC INC.				
1				XXX - 4,005					
2		1		30X - ±.010	дисплейный модуль, регулятор				
3		11			VTP	1:1			
4				- I		7-19-03	ana	016	
5	- 1	. 1						010	

КЛЕММНАЯ КОЛОДКА В РЕГУЛЯТОРЕ




ДИСПЛЕЙНЫЙ МОДУЛЬ


ПРИМЕЧАНИЕ:

- 1. ТРЕБОВАНИЯ ПО ПИТАНИЮ ДИСПЛЕЙНОГО МОДУЛЯ: 24В ПОСТ.ТОКА ПРИ 150 мА НОМИН.
- 2. ДЛЯ ПРАВИЛЬНОЙ РАБОТЫ ИНТЕРФЕЙСА RS-485 НЕОБХОДИМО, ЧТОБЫ ПОТЕНЦИАЛ КОНТУРОВ ЗАЗЕМЛЕНИЯ ДИСПЛЕЙНОГО МОДУЛЯ И РЕГУЛЯТОРА БЫЛ ОДИНАКОВ.
- 3. ИСПОЛЬЗУЙТЕ 4-ЖИЛЬНЫЙ ЭКРАНИРОВ.КАБЕЛЬ (РЕКОМЕНДУЕТСЯ КАБЕЛЬ ALTRONIC 503194) ДЛЯ ПОДКЛЮЧЕНИЯ ПИТАНИЯ И ШИНЫ RS-485. ЭКРАН ПОДСОЕДИНИТЬ В РАСПРЕД. КОРОБКЕ.

		изменения		ALTRONIC INC.				
Nº	ДАТА	ОПИСАНИЕ	()	ALI				
1			.XXX - ±.005 .XX - ±.010	ДИСПЛЕЙНЫЙ МОДУЛЬ, СХЕМА ПОДКЛЮЧЕНИЯ К РЕГУЛЯТОРУ				
2					дклю ченил к)F	
3				WTP				
4					10-17-03	809	017	
5						000	017	

